Power Grids in Asia Mode of operation and dynamics

Stephen Wilson

ECONOMIC CONSULTING ASSOCIATES LIMITED 41 Lonsdale Road London NW6 6RA UK tel +44 20 7604 4545 / fax +44 20 7604 4547 www.eca-uk.com

Presentation at a workshop on Power Grids and CDM Methodologies Buenos Aires, 8 December 2004

Outline

Key issues and questions

Four example countries

Implications for CDM projects seeking to avoid electricity generation emissions in Asia

Key issues

Drawing on the Baseline Recommendations paper of Kartha, Lazarus and Bosi, Energy Policy 32, 2004:

Build, operating or combined margin: defining the marginal plant

• now

in the future

Baseline dynamics and crediting lifetimes

- will new construction change the marginal plant?
- will this occur within the next 7 or 10 years?

Geographic aggregation, are plants dispatched

- by individual state/province only (sub-national)?
- by multi-state/province regions (wider sub-national)?
- across a national grid?
- with international imports and exports?

Key questions

Supply-demand balance

Is there adequate generation or a shortage? If a shortage, is this met by off-grid generation? What is the current generation plant mix? % of coal, gas-fired, hydro, nuclear, other What is the current generation fuel mix? % of coal, gas-fired, hydro, nuclear, other What is the current dispatch method? bid-based, economic least-cost or other **Dynamics** What is the rate of growth and additions? Will the additional plant change dispatch? How sensititive are future emissions to: additional plant? the dispatch method?

Example Asian countries

Country	Installed capacity	GW	Growth	
			Doubling	% pa
China	2 nd largest	~ 380	7y	10%
India	=6 th (with Germany)	~ 112	11y	6%
Thailand	Mid-sized	~ 25	10y	7%
Vietnam	Small	~10	8y	9%

- Huge system 300+ GW in 2002, ~380 GW in 2004
- 2nd largest in the world
- High developing country growth rates especially in the coastal south and east
- Large income and development disparities between coastal and interior provinces

Year 2002 values in GW

<1

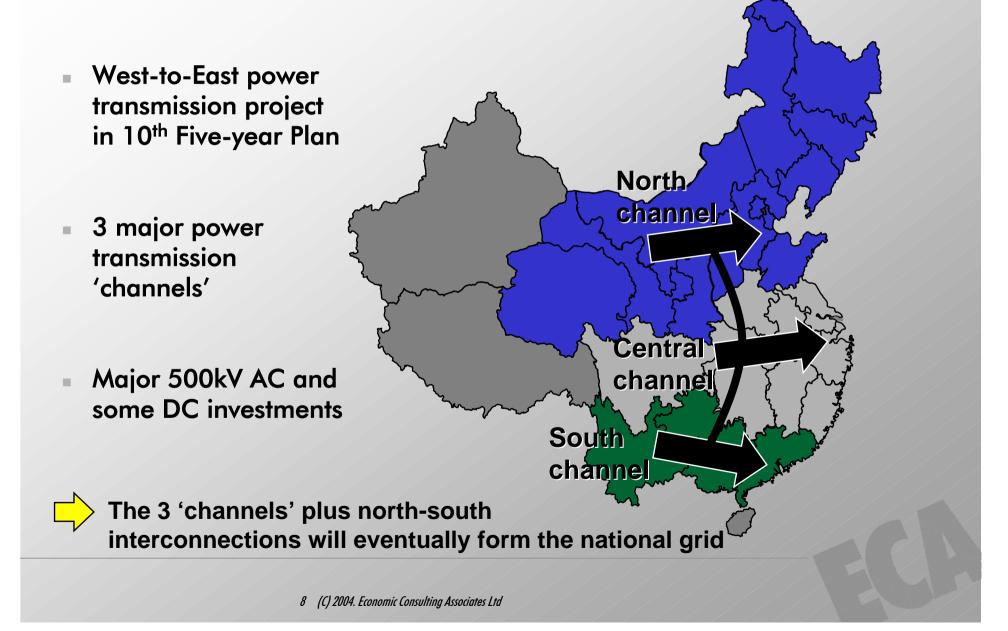
25

35

20

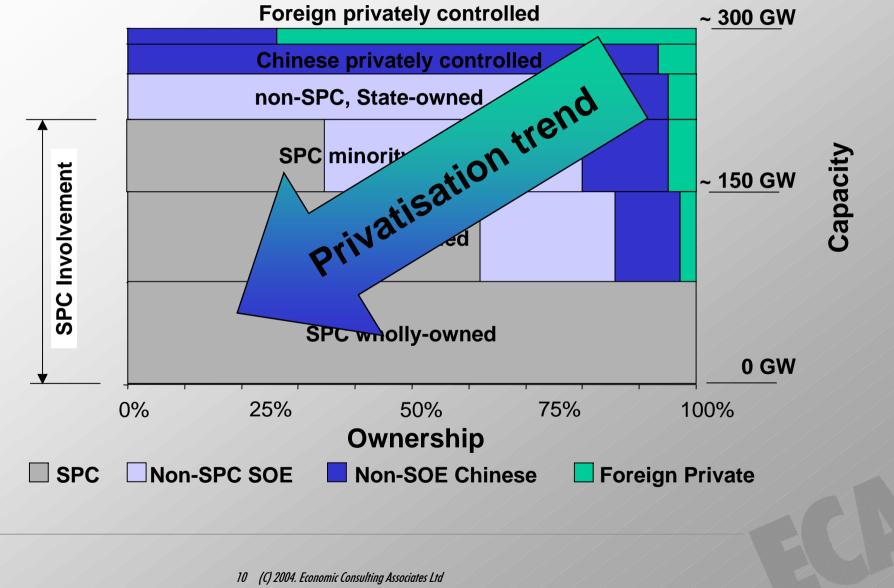
4

2


63

10

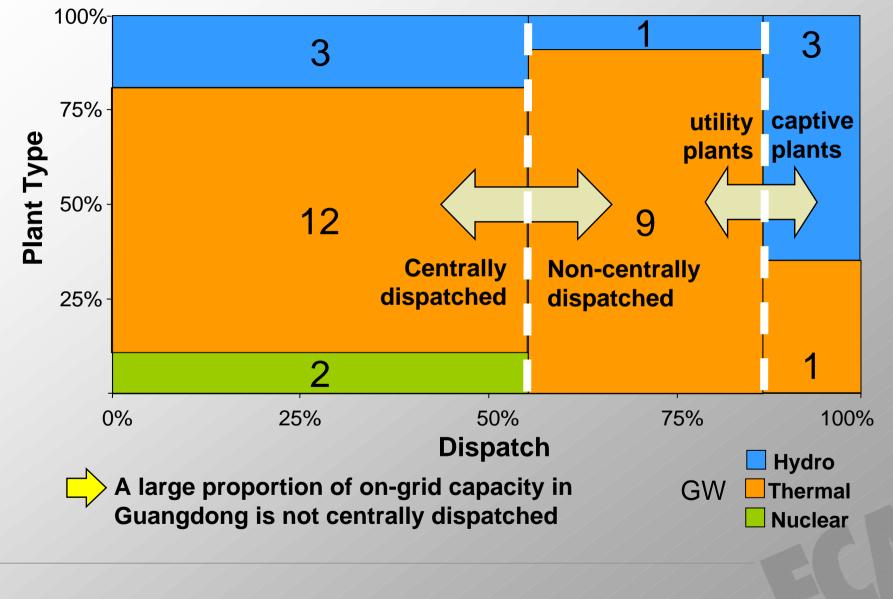
12


- Huge system 300+ GW in 2002, ~380 GW in 2004
- 2nd largest in the world
- High developing country growth rates especially in the coastal south and east
- Large income and development disparities between coastal and interior provinces
- Regional grids, with weak interconnections between provinces and largely non-existent interconnections between grids

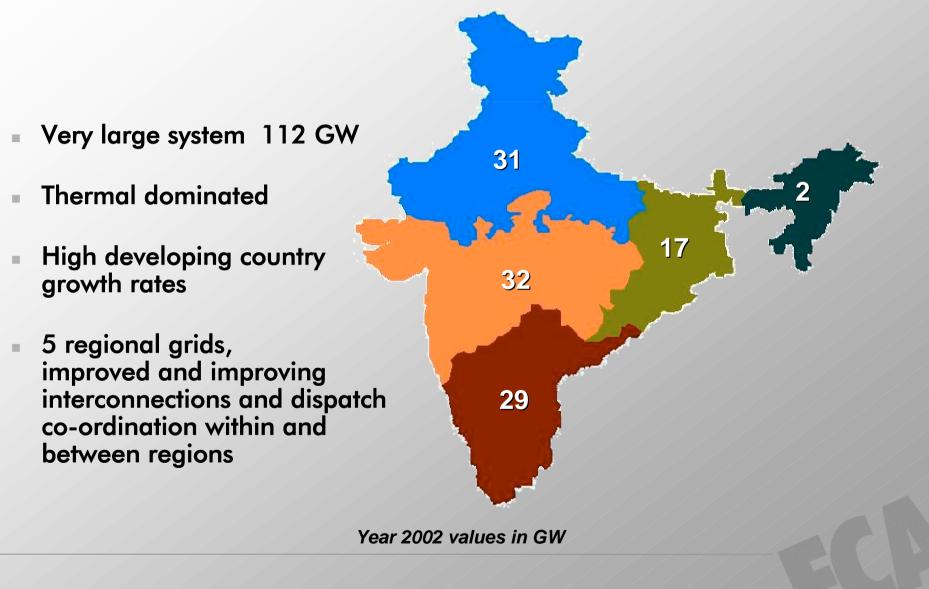
- Still predominantly state-owned, but trend is towards privatisation
- State-power generation assets divested into 5 gencos
- two large grid companies formed
- regional grids being tied together
- western resources (gas and hydro) being developed and 'forced' in to eastern provinces
- dispatch still involves 'sharing'
- generation shortage in some areas (eg: Guangdong)
- CDM unlikely to change hydro dispatch, gas will be must-run, so the 'marginal' plant is likely to be coal for the foreseeable future

Context: generation ownership in China's electricity sector

China: national grid


- Generation already separated from transmission
- State Power's generation assets allocated to five companies, transmission assets to two companies
- State Power to be a transco and system operator
- The 18 200 MW Three Gorges project will play a major role at the heart of the China's future national grid

State Power Grid Corporation


> Southern Power Grid Company

Guangdong and south China initially separate from 'national grid'

China: special case of Guangdong

India

India

- Mix of central and state-level ownership
- Capacity is still predominantly (90%) governmentowned, but there is a trend to privatisation, some states further down the path than others
- 5 regional grids, 4 regional dispatch centres
- dispatch previously state-by-state by telephone
 negotiation, little discipline, poor frequency control
- now much more co-ordinated, new availabilitybased generation tariff, Power Trading Corporation managing trades between excess and shortage states and catalysing new projects
- still generation shortages in some areas
- interconnections being improved, moving towards
 integrated national power market
- gas MAY play an increasingly large role
 marginal plant will be thermal, but gas or coal?

Thailand

- Mid-size system ~25 GW
- Thermal dominated, with a majority of gas
- High developing country growth rates
- National grid, with some constraints

Thailand

- Mix of state-ownership (EGAT still has 60%) and private
- One large base-load coal plant (~10%), but capacity (70%) and energy (~60%) is dominated by gas-fired combined cycle plant
- In dispatch EGAT decrements its plants to meet IPP contractual commitments
- Base load coal and hydro will always be dispatched
- It is safe to say that any CDM project would be avoiding gas-fired CCGT emissions

Vietnam

- Majority state-owned (EVN) but private IPPs coming in (eg: Phu My gas-fired CCGT)
- Hydro-thermal system, with gas-fired CCGT to dominate the thermal side
 - EVN are also planning a nuclear plant
- Assuming that gas-fired IPPs will be must-run,
 coal could be the marginal plant, but likely to
 need simulation to determine role of hydro

Economics: China

	Coal	Gas	
CapEx	500	600	US\$/kW
Annualised	83	100	US\$/kW/y
Unitised	1.12	1.33	USc/kWh
Fuel cost	2.28	4.17	USc/kWh
Total	3.40	5.50	USc/kWh
	+0&M	+0&M	

Cost of capital 10% over 10y (ie: 15% RoE if 70% debt @8%) 85% plant load factor Coal @\$65/tce, coal -> elec sent out 35% Gas @\$5.50/mmBtu, gas -> elec sent out 50%

Economics: India

	Coal	Gas	
CapEx	850	600	US\$/kW
Annualised	142	100	US\$/kW/y
Unitised	1.90	1.34	USc/kWh
Fuel cost	2.10	2.31	USc/kWh
Total	4.00	3.65	USc/kWh
	+O&M	+0&M	

Cost of capital 10% over 10y (ie: 15% RoE if 70% debt @8%) 85% plant load factor Coal @\$60/tce (~\$2/GJ), coal -> elec sent out 35% Gas @\$3/mmBtu (subsidised), gas -> elec sent out 50%

Economics: India (2)

	Coal	Gas	
CapEx	850	600	US\$/kW
Annualised	142	100	US\$/kW/y
Unitised	1.90	1.34	USc/kWh
Fuel cost	2.10	3.80	USc/kWh
Total	4.00	5.14	USc/kWh
	+O&M	+O&M	

Cost of capital 10% over 10y (ie: 15% RoE if 70% debt @8%) 85% plant load factor Coal @\$60/tce (~\$2/GJ), coal -> elec sent out 35% Gas @\$3/mmBtu (subsidised), gas -> elec sent out 50%

Carbon economics

	China	India	India	
Gas	5.50	3.65	5.14	
Coal	3.40	4.00	4.00	
Cost ∆	2.10	-0.35	1.14	USc/kWh
Emission Δ	0.45	0.45	0.45	kg/kWh
Unit cost	~47	-8	25	US\$/t CO ₂

Dynamics

Transmission projects can significantly change plant dispatch where they inter-connect

- states or provinces to sub-national regional grids (examples: China, India)
- sub-national grids to a national grid (examples: China, India)
- countries into international regional grids (examples: India with Nepal and Bhutan, Thailand and Vietnam with Laos)
- Power trading between previously connected but poorly co-oprdinated grids can significantly change plant dispatch
 - example: India
 - A move from traditional to market-based models has the potential to change plant dispatch significantly
 - partial example: power trading in India

Changes in:	Geographic aggregation	Dispatch method	Plant mix	Marginal plant
Country				
China	Yes	Tentatively	Somewhat	Probably not
India	Rapidly	Yes	Yes	Quite likely
Thailand	[Imports]	Maybe	Yes	No
Vietnam	[Imports]	Not likely	Somewhat	Possibly

Conclusion - China:

• Huge potential market and CDM projects could avoid coal emissions, but geographic aggregation and market developments may affect this

India:

Theoretically large potential market but with several dynamic changes, CDM projects are likely to be avoiding gas-fired CCGT emissions

Thailand:

CDM projects will be avoiding gas-fired CCGT emissions, therefore will need to be relatively low incremental c/kWh projects

Vietnam:

A relatively small market, but rapidly growing. Stable plant mix and non-imminent market reforms suggest minimal dynamic changes

Key questions

What price does the CDM project need to sell the electricity at to get dispatched?

- What does this imply about the plant being displaced in the dispatch schedule?
- What does this imply about the plant being deferred as a result of the CDM project?
- Will market reforms change this picture within the crediting life of CDM projects?

Contact

stephen.wilson@eca-uk.com