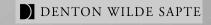
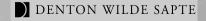
Development of the Framework to Support the Implementation and Regulation of a Full-Scale Competitive Wholesale Electricity Market


Final Workshop

Ray Tomkins and William Derbyshire

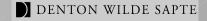
ECONOMIC CONSULTING ASSOCIATES LIMITED
41 Lonsdale Road London NW6 6RA UK
tel +44 (0)20 7604 4545 / fax +44 (0)20 7604 4547
www.eca-uk.com

Kyiv, 30 June 2005



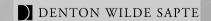
Agenda

- Introduction
 The WEM Concept
 - Overview
 - Benefits
- **Key Proposals**
 - Market design
 - Market structure
 - Regulation
 - Security of supply
- Comments and Discussion
- Next Steps
 - Transitional issues
 - Implementation timetable



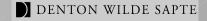
The WEM Concept

- The WEM (Wholesale Electricity Market) will be a parallel market comprising:
 - A regulated sector
 - A bilateral contracts market
 - A balancing mechanism



The Two Markets Compared

	Existing Power Pool	WEM Concept
Participants	 Generators Single buyer	 Generators Suppliers Traders / intermediaries
Pre-day ahead markets	n/a	 Voluntary bilateral contracts Unregulated prices
Day ahead markets	 Generators submit regulated cost-based bids Energomarket forecasts total demand Market price set at SMP of thermal 	Voluntary bilateral contractsTraded blocks on PXsUnregulated prices
Within day balancing	SO balancesPays and is paid SMP	SO balancesGenerators/demand submit bids and offers to adjust energy
Settlement	 HPs / NPPs receive regulated bid TPPs receive SMP Energomarket pays average purchase price 	Charged for imbalances between actual and contracted output/demand

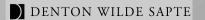


Impacts of the WEM Concept (I)

Establishing direct contracting between generators and suppliers

- allows generators to enforce payments by stopping supplies
- clarifies calculation of prices and quantities
- credit cover provisions can be matched to risks of non-payment
- customers can more easily bypass local suppliers, enhancing competition and reducing cross-subsidies

Impacts of the WEM Concept (II)


Removing restrictions on bids and offers by generators

- prices reflect costs of supply
- investors can set prices to recover costs

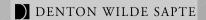
Allowing demand-side participation

- allows identification of customers who are willing to limit their consumption
- increases options to manage imbalances, reducing costs
- Introducing markets for balancing and ancillary services
 - allows purchases to be made at least-cost
 - increases incentives to provide these services

Benefits

Increased private investment

- much reduced risks of non-payment
- direct access to creditworthy customers
- freedom to set cost-reflective prices


Greater competition

- customers can choose who to buy from
- generators can compete on price
- pressures to reduce costs and improve creditworthiness

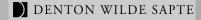
Integration into EU energy markets

- WEM Concept consistent with 'EU model' for electricity markets
- opportunity to ensure compliance with EU legislation

Market Design Market Structure Regulation **Security of Supply Next Steps**

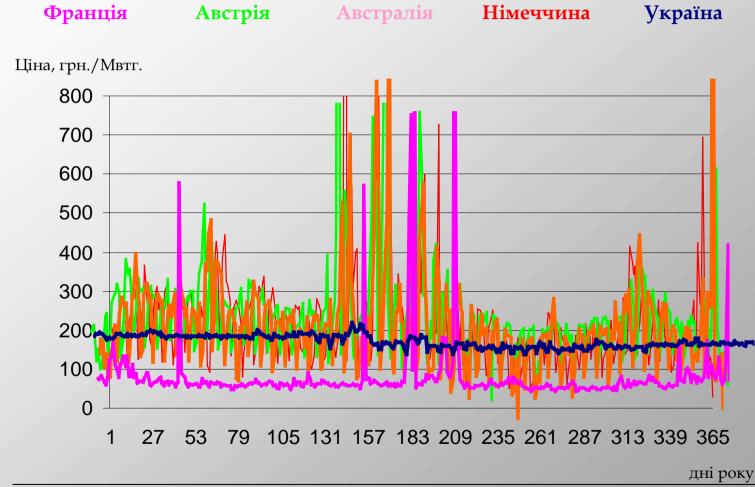
Trans Energo

Market Design: Commercial Arrangements



Key Issues

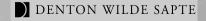
- Should a power exchange (PX) be established as part of the WEM Concept?
 - provides means to manage risks
 - needs to meet a need of participants if it is to succeed
- Who pays for losses?
- What credit cover provisions should be put in place?



WEM Price Volatility Compared

Коливання ціни електроенергії:

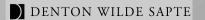
Sources: NERC



- Credit Cover We have not made specific proposals
 - Bilateral contracts will contain their own provisions for credit cover
 - Need to ensure credit cover provisions in WEM are reasonable
 - significant cost to participants, and ultimately to customers
 - over-stringent requirements act as barrier to new entrants

Outstanding Contract markets **Decisions**

- who drafts the model contracts?
- should provision for an MO-established PX be made in legislation?

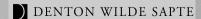

Paying for losses

what incentives do the SO and transmission asset owner have to reduce losses?

Credit cover

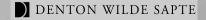
what forms and level of credit cover should WEM participants provide?

Market Design: Scheduling and Dispatch



Key Issues

- Should generators be allowed to 'self-schedule'?
 - can reduce efficiency and raise costs
 - ensures generators are able to schedule output to match contracted sales
- How are transmission constraints managed in scheduling?
 - constrained scheduling with nodal or zonal prices differing
 - unconstrained scheduling with constraints managed in real-time through redispatching
 - constrained scheduling gives more efficient prices, but more complex to apply

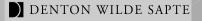


Self-**Scheduling**

- WEM Concept envisages central scheduling during transition and self-scheduling once new WEM fully established
- We have proposed all generators are required to submit bids and offers to balancing mechanism
- Implies self-scheduling, but generators may be required to deviate where this manages imbalances at least-cost

Market Design: Balancing Mechanism

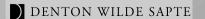
Key Issues (I)


'Hard' or 'soft' regime?

- hard regime penalises imbalances to encourage participants to trade ahead to manage imbalances
- soft regime applies smaller penalties for imbalances

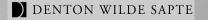
Gross or net balance calculation?

- gross calculates imbalances separately for generation and demand
- net offsets 'long' generation against 'short' demand and vice-versa
- net calculation reduces exposure to balancing mechanism and favours vertically-integrated participants



Key Issues (II)

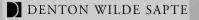
- Single or two price regime?
 - single price regime applies same price for spilling and buying energy
 - two price regime charges different prices, depending on system balance
 - single price regime is more efficient, but less incentive to avoid imbalances
- Marginal, average or administered imbalance charges?
 - marginal prices are more efficient
 - more volatile and may be more exposed to market manipulation
 - administered prices are most predictable but least efficient



Aims for the Balancing Mechanism

WEM Concept does not describe envisaged balancing mechanism

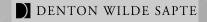
- Our proposals assume that objectives for mechanism are to
 - minimise price shocks
 - avoid price volatility
 - promote entry by new generators and suppliers, who may not be vertically integrated
- Argues for favouring 'soft' pricing rather than economic efficiency



Our **Proposals**

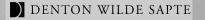
- Calculate gross imbalances
- Calculate separate imbalances for each trading period
- Set imbalance charges using one price regime
- Calculate imbalance charges on basis of average price
- Allow ex-post trading of imbalances (although activity will be limited under soft regime)
- Use administered imbalance price in Stage 1 of transition to new WEM (involves CHPs only)

Market Design: Ancillary Services



Key Issues

- What definitions of ancillary services are used?
 - How are ancillary services purchased?

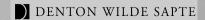


Our Proposals

- WEM Concept identifies need for market in ancillary services
- We propose that
 - frequency-keeping reserves are procured as part of the scheduling and dispatch process
 - spinning or standing reserve may be purchased through additional reserve requirements
 - provision of AGC becomes a mandatory and uncompensated requirement on all generators
 - black start and reactive power services are procured under contract through a competitive tendering process

UCTE Reserves Hierarchy

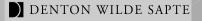
Primary Control Reserves (<30 seconds)


Secondary Control Reserves (30 seconds+)

Tertiary Control Reserves (<15 minutes)

Balancing Energy

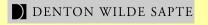
- Primary control reserves respond to frequency deviation
- Secondary control reserves are used to release primary reserve capacity
- Tertiary control reserves are used to release secondary reserve capacity
- Balancing energy dispatched in parallel with tertiary control reserves



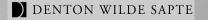
Outstanding-**Decisions**

Are other ancillary services required?

- When should the mandatory requirement to provide AGC be introduced?
- How are reserves procured during the transition from the existing **MEW**[§]

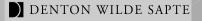


Market Structure: Definition of Eligible Customers



Key Issues

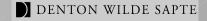
- How is consumption for purposes of determining eligibility calculated?
 - single or multi-site?
 - include or exclude self-supplied demand?
 - can eligibility be lost if consumption falls below threshold?
- Can eligible customers opt to remain in the existing WEM?



Eligible Customers in the Existing WEM

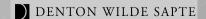
- During the transition, regulated prices in the existing WEM may be held below competitive prices in the new WEM
- If so, then, for the competitive WEM to succeed, eligible customers must <u>not</u> be able to purchase from the existing WEM at lower prices
- This will be very politically controversial, and is a key issue for the transition to the new WEM

Market Structure: Participation by NPPs (Nuclear Power Plants)



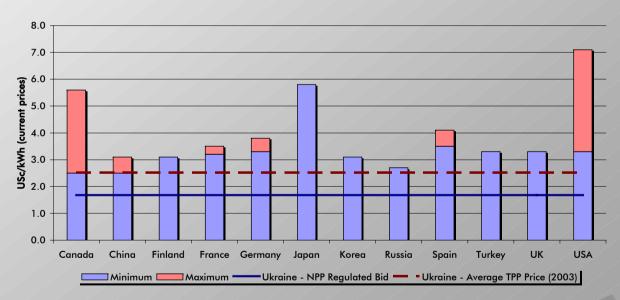
Key Issues

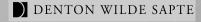
- How do NPPs manage revenue risks in a competitive market?
 - NPP output is inflexible
 - leaves NPPs very exposed to imbalance charges
- How can recovery of decommissioning and waste liability management costs be assured?



Our Proposals

- WEM Concept contains statement of intent that NPPs should bid competitively
- We understand that a separate fund for decommissioning and waste management liabilities is being established
- We propose that imbalance risks are managed by permitting
 - vertical integration NPPs can buy supply businesses
 - horizontal integration NPPs can buy more flexible TPPs

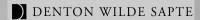



Removing Regulated Caps on **NPPs**

Decisions on the speed of removal of existing regulatory controls on NPP bids need to consider impact on WEM prices Must rely on country-specific data – no international consensus on NPP costs

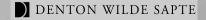
Market Structure: Allocation of Capacity

DENTON WILDE SAPTE



Key Issues

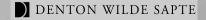
- Existing capacity comprises
 - □ HPs 9%
 - □ NPPs 23%
 - □ TPPs 68%
- How should this be allocated between existing and new WEM during the transition?
- The approach taken affects
 - price levels in the two markets
 - price volatility in the two markets
 - the ability of market participants to contract flexible capacity which can match their load shape



Our Proposals

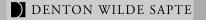
- The WEM Concept envisages that HPs will be restricted to selling through the power pool and balancing mechanism
- We have proposed that CHP, NPP and TPP capacity is allocated
 - in proportion to the share of demand met from each market
 - to achieve a balanced mix of plant types and costs in each market
- Most equitable approach
- HPP capacity should be made available for balancing purposes, and required to submit bids and offers to the balancing mechanism

Regulation: **Market Monitoring**

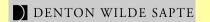


DENTON WILDE SAPTE

Institution-Framework


- WEM Concept allocates responsibility for market monitoring to NERC
- We propose that NERC is responsible for collecting and publishing indicators of WEM competitiveness annually
- The published report should include recommendations on how to address identified market power

Approach and Remedies

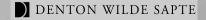

- A range of indicators should be monitored – no single indicator is sufficient
- Both conduct (e.g. price caps) and structural (e.g. forced divestment of capacity) remedies should be permitted
- The use of conduct-based remedies should be time-limited and subject to regular review

Regulation: **Treatment of NJSC** (National Joint Stock **Company**)



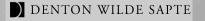
Key Issues

- The National Joint Stock Company (NJSC) will own
 - majority stakes in generators representing 45% of capacity
 - majority stakes in 12 oblenergos, representing 70% of wholesale electricity purchases
 - minority stakes in 8 oblenergos, representing 18% of wholesale electricity purchases
- The size of NJSC's market share and its vertically integrated nature raise major competition concerns



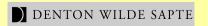
Our **Proposals**

- We recommend that NJSC be subject to additional monitoring of its bidding and sales activities
- Where there is evidence of abuse of its dominant position, NJSC should 'lease' capacity as virtual IPPs (VIPPs)
- A VIPP is a contract giving a third party rights to sell energy and determine bidding strategies for NJSC-owned generators

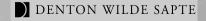


Outstanding-**Decisions**

- Should there be any requirement for NJSC to separate its individual businesses?
- How should any VIPP contracts be structured?
- Should any restrictions be placed on power purchases by NJSCowned oblenergos?
- What mechanisms exist to ensure fair access for third parties to distribution networks belonging to NJSC-owned oblenergos?



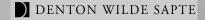
Regulation: **Regulation of Bids and Offers**



Trans Energo consulting

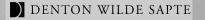
Key Issues

- Generators in the existing WEM may continue to have their bids regulated for a period
- This creates an incentive to sell at unregulated prices in the new WEM during the transition period
- Generators will seek to reduce capacity offered to the existing WEM and increase that sold through the balancing mechanism



Our **Proposals**

- We propose that, for generators allocated to the existing WEM
 - the MO is responsible for submitting bids and offers to the balancing mechanism
 - the prices paid from the balancing mechanism to these generators are the same as the SMP set in the power pool
- This removes the incentive and option to sell in the balancing mechanism, rather than the existing WEM

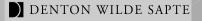


Outstanding-Decisions

- When is regulation of generators in the existing WEM removed?
- How does the MO submit bids and offers to the balancing mechanism?
- How are differences between payments made and received through the balancing mechanism managed?
- What controls are in place to prevent conflicts of interest between the MO as a participant in and the operator of the WEM?

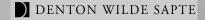
Security of Supply: Capacity Payments

DENTON WILDE SAPTE



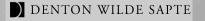
Key Issues

- If peaking generators are reliant on energy market revenues alone, then prices in some hours must spike to very high levels
- The resulting price levels and volatility may be unacceptable
- Capacity payments are a way to reduce reliance on energy market revenues
- Generators are paid for making capacity available, even if it is not dispatched



Our Proposals

- The WEM Concept refers to unregulated generators earning a capacity fee in order to promote new investment
- Capacity payments reduce the efficiency of energy prices, and can be complex to implement
- We have proposed that the SO can, instead, contract with individual generators to provide standing reserve

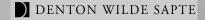


Decisions

- Outstanding Who determines the required capacity margin?
 - Which generators are eligible for standing reserve contracts?
 - How are standing reserve contracts awarded?
 - How are generators with standing reserve contracts paid?
 - How are generators with standing reserve contracts scheduled and dispatched?

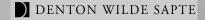
Security of Supply: Buyer of Last Resort

DENTON WILDE SAPTE



Key Issues

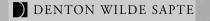
- The 2003 EU Directive provides for a tendering process for new generation, where capacity build under the authorisation process is insufficient
- This creates a need to allocate responsibility for
 - identifying the need to commence the tendering process
 - administering the tender
 - signing contracts awarded through the tendering process



Our Proposals

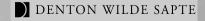
- The WEM Concept allocates responsibility for planning and tendering to a 'state agency'
- The long-term plan is approved by the Cabinet of Ministers
- We have proposed the SO becomes the responsible agency
 - independent of other market participants
 - best placed to access the necessary information and data

Security of Supply: Supplier of Last Resort



Key Issues

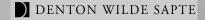
- In any competitive WEM, a supplier runs the risk of bankruptcy
- In such circumstances, what measures are in place to protect customers from interruptions to supply?



Our Proposals

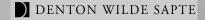
- NERC should have powers to appoint a supplier of last resort (SLOR), where a supplier fails to provide service
- The SLOR serves customers of the failed supplier until these can be voluntarily transferred to another supplier
- Additional costs incurred by the SLOR are recovered by a levy on customers

Security of Supply: Reciprocity in Cross-Border Trade



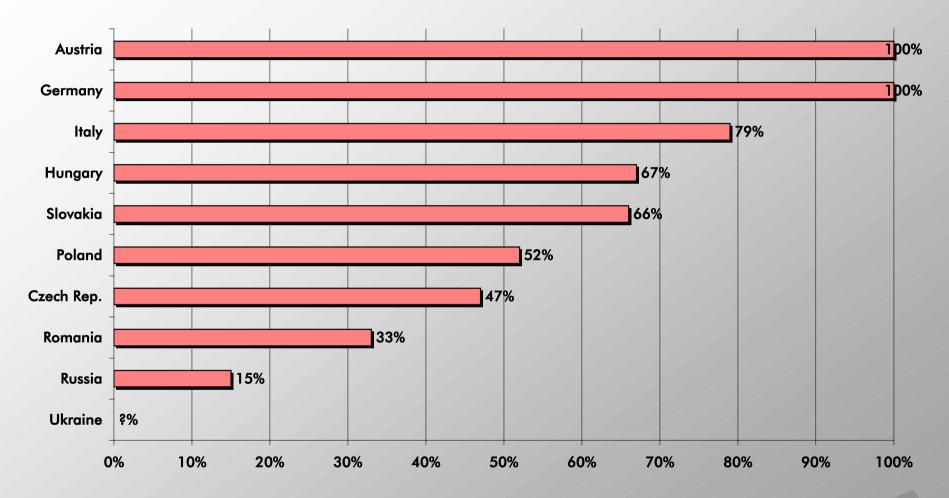
Key Issues

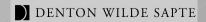
- Allowing large-scale imports of energy runs the risks of
 - dumping by foreign generators
 - reduced security of supply
- These risks need to be balanced against the benefits of lower prices for customers
- It is important to understand when imports can be limited under EU and international trade law



Conclusions -

EU law appears to mean that

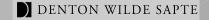

- Ukraine cannot limit imports on reciprocity grounds, if the eligible share of the electricity market in the Ukraine is less than in the exporting country
- Ukraine may be subject to restrictions on exports to EU, if market opening less than Member States
- achieving Ukraine's goals for trade requires greater market opening
- International treaties may allow use of non-discriminatory import restrictions



Market opening compared

EC, January 2005, Annual Report on the Implementation of the Gas and Electricity Internal Market, Brussels (Selected countries only)

Security of Supply: Promotion of Renewables



Key Issues

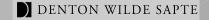
- Renewables are uncompetitive relative to conventional technologies, if environmental costs are not recognised
- Providing initial price support allows renewables to become competitive
 - economies of scale
 - learning by doing
- Two main mechanisms in the EU
 - feed-in tariffs (guaranteed purchase prices)
 - renewable portfolio standards (RPSs)





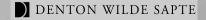
The UK Renewables Obligation

- Set obligation of 10% and penalty of £30/MWh
- Renewables generator produces and sells
 - 10 MWh to Supplier 2@£25/MWh
 - 10 ROCs to ROC Trader@£30/MWh
 - earns £55/MWh in total
- Supplier 1 buys 10 ROCs from ROC Trader
- Supplier 1 cashes-in ROCs to meet 10MWh obligation
- Supplier 2 has no ROCs and is charged penalty for 10MWh obligation



Our **Proposals**

- Replace existing mechanisms with guaranteed purchase price with auctions to selected qualifying generators
 - simple to introduce and administer
 - low level of regulatory risk
 - creates competition between renewables projects
 - allows SO to manage quantities of renewables on system
- Transitional measure while WEM Concept implemented

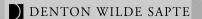


Long-Term Proposals

- Guaranteed purchase price not consistent with WEM Concept
 - suppliers buying renewables disadvantaged in retail competition
 - renewables face higher balancing risks
- Introduce RPS once new WEM established
 - renewables earn revenues from RECs, and are therefore less exposed to energy market risks
 - all suppliers face same obligations and compete on equal terms

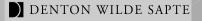
Next steps

Transition to the New WEM



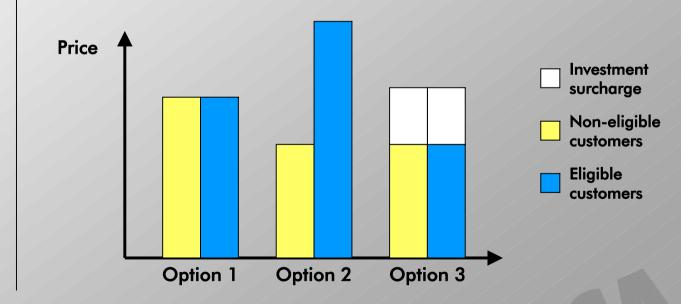
Prices in the New WEM

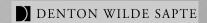
- Regulated prices in the existing WEM are below those likely to exist in a competitive WEM
- The increase is an efficient outcome prices respond to the need for investment
- The impacts on individual customers will depend on
 - the extent to which efficiency gains from competitive pressures in the new WEM reduce costs
 - lower prices (e.g. by offering larger volumes or flatter load profiles)



Transition Options

- Option 1 Remove all price regulation
 - prices rise to finance new investment
 - price shocks for smaller customers
- Option 2 Continue to regulate prices in the existing WEM
 - new investments financed from higher prices in new WEM
 - discriminates against eligible customers supplied from new WEM
- Option 3 Regulate prices in both WEM
 - does not allow prices to rise to fund new investments
 - does not comply with objectives set for the WEM
 Concept





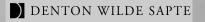
Funding Investment

- If prices in both markets are regulated, then an investment surcharge will be required
- Otherwise, investments are funded either from the new WEM alone, or from both markets

Next steps

Timetable and Support Requirements

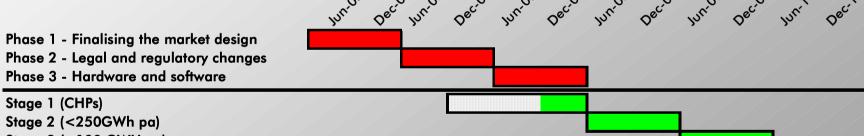
Trans Energo consulting



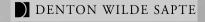
Implementation **Phases**

Three main phases

- resolving outstanding questions of market design
- a setting out the final WEM design in a suite of codes and rules, as well as implementing any changes in primary legislation
- establishing the necessary supporting hardware and software
- Also need to remove obstacles to viable industry
 - resolve existing debt 'overhang'
 - ensure this does not recur



Overall Timetable


- Each implementation phase might last for up to a year
- The WEM Concept estimates that implementation of the new WEM in full, might take up to five years
- Four stages of market opening, each lasting for approximately one year

Stage 4 (all customers)

